What Data Science Platform Suits Your Organization’s Needs?

This summer, my Amalgam Insights colleague Hyoun Park and I will be teaming up to address that question. When it comes to data science platforms, there’s no such thing as “one size fits all.” We are writing this landscape because understanding the processes of scaling data science beyond individual experiments and integrating it into your business is difficult. By breaking down the key characteristics of the data science platform market, this landscape will help potential buyers choose the appropriate platform for your organizational needs. We will examine the following questions that serve as key differentiators to determine appropriate data science platform purchasing solutions to figure out which characteristics, functionalities, and policies differentiate platforms supporting introductory data science workflows from those supporting scaled-up enterprise-grade workflows.

Please register or log into your Amalgam Insights Community account to read more.
Log In Register

Cloudera Analyst Conference Makes The Case for Analytic & AI Insights at Scale

On April 9th and 10th, Amalgam Insights attended the fifth Cloudera’s Industry Analyst and Influencer Conference (which I’ll self-servingly refer to as the Analyst Conference since I attended as an industry analyst) in Santa Monica. Cloudera sought to make the case that it was evolving beyond the market offerings that it is currently best known for as a Hadoop distribution and commercial data lake in becoming a machine learning and analytics platform. In doing so, Cloudera was extremely self-aware of its need to progress beyond the role of multi-petabyte storage at scale to a machine learning solution.
Cloudera’s Challenges in Enterprise Machine Learning 
Please register or log into your Amalgam Insights Community account to read more.
Log In Register

Data and Analytic Strategies for Developing Ethical IT: a BrightTALK webinar

BI to AI on Trusted Data - An Amalgam Insights Research Theme
BI to AI on Trusted Data – An Amalgam Insights Research Theme

Recommended Audience: CIOs, Enterprise Architects, Data Managers, Analytics Managers, Data Scientists, IT Managers

Vendors Mentioned: Trifacta, Paxata, Datameer, Datawatch, Lavastorm, Alation, Tamr, Unifi, 1010Data, Podium Data, IBM, Domo, Microsoft, Information Builders, Board, Microstrategy, Cloudera, H20.ai, RapidMiner, Domino Data Lab, Dataiku, TIBCO, SAS, Amazon Web Services, Google, DataRobot.

In case you missed it, I just finished up my webinar on Data and Analytic Strategies for Developing Ethical IT. We are headed into a new algorithmic, statistical, and heterogenous data-defined model of IT where IT ethics and relevance are being challenged. In this webinar, we discussed:

  • Why IT is broken from a support and business perspective
  • The aspects of IT that can be fixed
  • What we can do as IT managers to fix IT
  • Data Prep, Data Unification, Business Intelligence, Data Science, and Machine Learning vendors that can help unlock the Black Boxes and Opt-Out disasters in IT
  • Key Recommendations

This webinar provides context to my ongoing research tracks of “BI to AI on Shared Data” and “IT Management at Scale.” To attend the webinar, please check the embedded view below or click to watch on BrightTALK