Data Science and Machine Learning News Roundup, February 2019

On a monthly basis, I will be rounding up key news associated with the Data Science Platforms space for Amalgam Insights. Companies covered will include: Alteryx, Amazon, Anaconda, Cambridge Semantics, Cloudera, Databricks, Dataiku, DataRobot, Datawatch, Domino, Elastic, Google, H2O.ai, IBM, Immuta, Informatica, KNIME, MathWorks, Microsoft, Oracle, Paxata, RapidMiner, SAP, SAS, Tableau, Talend, Teradata, TIBCO, Trifacta, TROVE.

Four Key Announcements from H2O World in San Francisco

At H2O World in San Francisco, H2O.ai made several important announcements. Partnerships with Alteryx, Kx, and Intel will extend Driverless AI’s accessibility, capabilities, and speed, while improvements to Driverless AI, H2O, Sparkling Water, and AutoML focused on expanding support for more algorithms and heavier workloads. Amalgam Insights covered H2O.ai’s H2O World announcements.

IBM Watson Now Available Anywhere

At IBM Think in San Francisco, IBM announced the expansion of Watson’s availability “anywhere” – on-prem, and in any cloud configuration, whether private or public, singular or multi-cloud. Data no longer has to be hosted on the IBM Cloud to use Watson on it – instead, a connector from IBM Cloud Private for Data permits organizations to bring various Watson services to data that cannot be moved for privacy and security reasons. Update: Amalgam Insights now has a more in-depth evaluation of IBM Watson Anywhere.

Databricks’ $250 Million Funding Supports Explosive Growth and Global Demand for Unified Analytics; Brings Valuation to $2.75 Billion

Databricks has raised $250M in a Series E funding round, bringing its total funding to just shy of $500M. The funding round raises Databricks’ valuation to $2.75B in advance of a possible IPO. Microsoft joins this funding round, reflecting continuing commitment to the Azure Databricks collaboration between the two companies. This continued increase in valuation and financial commitment demonstrates that funders are satisfied with Databricks’ vision and execution.

Four Key Announcements from H2O World San Francisco

Last week at H2O World San Francisco, H2O.ai announced a number of improvements to Driverless AI, H2O, Sparkling Water, and AutoML, as well as several new partnerships for Driverless AI. The improvements provide incremental improvements across the platform, while the partnerships reflect H2O.ai expanding their audience and capabilities. This piece is intended to provide guidance…

Please register or log into your Free Amalgam Insights Community account to read more.
Log In Register

Data Science Platforms News Roundup, August 2018

On a monthly basis, I will be rounding up key news associated with the Data Science Platforms space for Amalgam Insights. Companies covered will include: Alteryx, Anaconda, Cloudera, Databricks, Dataiku, DataRobot, Datawatch, Domino, H2O.ai, IBM, Immuta, Informatica, KNIME, MathWorks, Microsoft, Oracle, Paxata, RapidMiner, SAP, SAS, Tableau, Talend, Teradata, TIBCO, Trifacta.

Please register or log into your Free Amalgam Insights Community account to read more.
Log In Register

Data Science Platforms News Roundup, June 2018

On a monthly basis, I will be rounding up key news associated with the Data Science Platforms space for Amalgam Insights. Companies covered will include:

Please register or log into your Free Amalgam Insights Community account to read more.
Log In Register

What Data Science Platform Suits Your Organization’s Needs?

This summer, my Amalgam Insights colleague Hyoun Park and I will be teaming up to address that question. When it comes to data science platforms, there’s no such thing as “one size fits all.” We are writing this landscape because understanding the processes of scaling data science beyond individual experiments and integrating it into your business is difficult. By breaking down the key characteristics of the data science platform market, this landscape will help potential buyers choose the appropriate platform for your organizational needs. We will examine the following questions that serve as key differentiators to determine appropriate data science platform purchasing solutions to figure out which characteristics, functionalities, and policies differentiate platforms supporting introductory data science workflows from those supporting scaled-up enterprise-grade workflows.

Please register or log into your Free Amalgam Insights Community account to read more.
Log In Register

Alter(yx)ing Everything at Inspire 2018

In early June, Amalgam Insights attended Alteryx Inspire ‘18, where Alteryx Chairman and CEO Dean Stoecker led an energetic keynote to inspire their users to “Alter(yx) Everything.” Based on conversations I had with Alteryx executives, partners, and end-users, I came away with the strong impression that Alteryx wants to make advanced analytics and data science tasks as easy and quick as possible for a broad audience that may not know code – and they want to expand that community and its capabilities as quickly as possible. Data scientists and analytics-knowledgeable employees are in high demand, and the shortage is projected to worsen as the demand for these capabilities grows; data is growing faster than the existing data analyst and data scientist community can keep up with it.

Please register or log into your Free Amalgam Insights Community account to read more.
Log In Register

Lynne Baer: Clarifying Data Science Platforms for Business

Word cloud of data science software and terms

My name is Lynne Baer, and I’ll be covering the world of data science software for Amalgam Insights. I’ll investigate data science platforms and apps to solve the puzzle of getting the right tools to the right people and organizations.

“Data science” is on the tip of every executive’s tongue right now. The idea that new business initiatives (and improvements to existing ones) can be found in the data a company is already collecting is compelling. Perhaps your organization has already dipped its toes in the data discovery and analysis waters – your employees may be managing your company’s data in Informatica, or performing statistical analysis in Statistica, or experimenting with Tableau to transform data into visualizations.

But what is a Data Science Platform? Right now, if you’re looking to buy software for your company to do data science-related tasks, it’s difficult to know which applications will actually suit your needs. Do you already have a data workflow you’d like to build on, or are you looking to the structure of an end-to-end platform to set your data science initiative up for success? How do you coordinate a team of data scientists to take better advantages of existing resources they’ve already created? Do you have coders in-house already who can work with a platform designed for people writing in Python, R, Scala, Julia? Are there more user-friendly tools out there your company can use if you don’t? What do you do if some of your data requires tighter security protocols around it? Or if some of your data models themselves are proprietary and/or confidential?

All of these questions are part and parcel of the big one: How can companies tell what makes a good data science platform for their needs before investing time and money? Are traditional enterprise software vendors like IBM, Microsoft, SAP, SAS dependable in this space? What about companies like Alteryx, H2O.ai, KNIME, RapidMiner? Other popular platforms under consideration should also include Anaconda, Angoss (recently acquired by Datawatch), Domino, Databricks, Dataiku, MapR, Mathworks, Teradata, TIBCO. And then there’s new startups like Sentenai, focused on streaming sensor data, and slightly more established companies like Cloudera looking to expand from their existing offerings.

Over the next several months, I’ll be digging deeply to answer these questions, speaking with vendors, users, and investors in the data science market. I would love to speak with you, and I look forward to continuing this discussion. And if you’ll be at Alteryx Inspire in June, I’ll see you there.

Cloudera Analyst Conference Makes The Case for Analytic & AI Insights at Scale

On April 9th and 10th, Amalgam Insights attended the fifth Cloudera’s Industry Analyst and Influencer Conference (which I’ll self-servingly refer to as the Analyst Conference since I attended as an industry analyst) in Santa Monica. Cloudera sought to make the case that it was evolving beyond the market offerings that it is currently best known for as a Hadoop distribution and commercial data lake in becoming a machine learning and analytics platform. In doing so, Cloudera was extremely self-aware of its need to progress beyond the role of multi-petabyte storage at scale to a machine learning solution.
Cloudera’s Challenges in Enterprise Machine Learning 
Please register or log into your Free Amalgam Insights Community account to read more.
Log In Register

With Cloudera’s S-1, Hadoop and Big Data Finally Come of Age

On Friday, March 31st, Cloudera filed its S-1 with intention to IPO. The timing looks good considering the recent successful IPOs of Alteryx, Mulesoft, and Snap. But how does Cloudera actually match up with other tech companies in terms of being successful in the short and medium term?

Cloudera’s S-1 filing starts by describing the near-term growth potential of the Internet of Things and IDC’s estimate of 30 billion internet-connected mobile devices in 2020. Every analyst and consulting firm has some idea of whether this is going to be 20 billion, 30 billion, or 40 billion, but the most important aspects of this growth are that:

Please register or log into your Free Amalgam Insights Community account to read more.
Log In Register